Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Ecol Evol ; 13(11): e10776, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020686

RESUMO

Projected increases in hurricane intensity under a warming climate will have profound effects on many forest ecosystems. One key challenge is to disentangle the effects of wind damage from the myriad factors that influence forest structure and species distributions over large spatial scales. Here, we employ a novel machine learning framework with high-resolution aerial photos, and LiDAR collected over 115 km2 of El Yunque National Forest in Puerto Rico to examine the effects of topographic exposure to two hurricanes, Hugo (1989) and Georges (1998), and several landscape-scale environmental factors on the current forest height and abundance of a dominant, wind-resistant species, the palm Prestoea acuminata var. montana. Model predictions show that the average density of the palm was 32% greater while the canopy height was 20% shorter in forests exposed to the two storms relative to unexposed areas. Our results demonstrate that hurricanes have lasting effects on forest canopy height and composition, suggesting the expected increase in hurricane severity with a warming climate will alter coastal forests in the North Atlantic.

3.
Sci Adv ; 8(30): eabd2713, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35905176

RESUMO

Exceptional fire activity in 2019 sparked concern about Amazon forest conservation. However, the inability to rapidly separate satellite fire detections by fire type hampered fire suppression and assessment of ecosystem and air quality impacts. Here, we describe the development of a near-real-time approach for tracking contributions from deforestation, forest, agricultural, and savanna fires to burned area and emissions and apply the approach to the 2019 fire season in South America. Across the southern Amazon, 19,700 deforestation fire events accounted for 39% of all satellite active fire detections and the majority of fire carbon emissions (63%; 69 Tg C). Multiday fires accounted for 81% of burned area and 92% of carbon emissions from the Amazon, with many forest fires burning uncontrolled for weeks. Most fire detections from deforestation fires were correctly identified within 2 days (67%), highlighting the potential to improve situational awareness and management outcomes during fire emergencies.

4.
Sci Data ; 9(1): 249, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637186

RESUMO

Changing wildfire regimes in the western US and other fire-prone regions pose considerable risks to human health and ecosystem function. However, our understanding of wildfire behavior is still limited by a lack of data products that systematically quantify fire spread, behavior and impacts. Here we develop a novel object-based system for tracking the progression of individual fires using 375 m Visible Infrared Imaging Radiometer Suite active fire detections. At each half-daily time step, fire pixels are clustered according to their spatial proximity, and are either appended to an existing active fire object or are assigned to a new object. This automatic system allows us to update the attributes of each fire event, delineate the fire perimeter, and identify the active fire front shortly after satellite data acquisition. Using this system, we mapped the history of California fires during 2012-2020. Our approach and data stream may be useful for calibration and evaluation of fire spread models, estimation of near-real-time wildfire emissions, and as means for prescribing initial conditions in fire forecast models.

5.
Nat Commun ; 13(1): 1964, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413947

RESUMO

Biophysical effects from deforestation have the potential to amplify carbon losses but are often neglected in carbon accounting systems. Here we use both Earth system model simulations and satellite-derived estimates of aboveground biomass to assess losses of vegetation carbon caused by the influence of tropical deforestation on regional climate across different continents. In the Amazon, warming and drying arising from deforestation result in an additional 5.1 ± 3.7% loss of aboveground biomass. Biophysical effects also amplify carbon losses in the Congo (3.8 ± 2.5%) but do not lead to significant additional carbon losses in tropical Asia due to its high levels of annual mean precipitation. These findings indicate that tropical forests may be undervalued in carbon accounting systems that neglect climate feedbacks from surface biophysical changes and that the positive carbon-climate feedback from deforestation-driven climate change is higher than the feedback originating from fossil fuel emissions.


Assuntos
Carbono/metabolismo , Mudança Climática , Florestas , Clima Tropical , Biomassa , Conservação dos Recursos Naturais , Árvores
6.
Proc Natl Acad Sci U S A ; 119(18): e2102878119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35471905

RESUMO

Safeguarding tropical forest biodiversity requires solutions for monitoring ecosystem structure over time. In the Amazon, logging and fire reduce forest carbon stocks and alter habitat, but the long-term consequences for wildlife remain unclear, especially for lesser-known taxa. Here, we combined multiday acoustic surveys, airborne lidar, and satellite time series covering logged and burned forests (n = 39) in the southern Brazilian Amazon to identify acoustic markers of forest degradation. Our findings contradict expectations from the Acoustic Niche Hypothesis that animal communities in more degraded habitats occupy fewer "acoustic niches" defined by time and frequency. Instead, we found that aboveground biomass was not a consistent proxy for acoustic biodiversity due to the divergent patterns of "acoustic space occupancy" between logged and burned forests. Ecosystem soundscapes highlighted a stark, and sustained reorganization in acoustic community assembly after multiple fires; animal communication networks were quieter, more homogenous, and less acoustically integrated in forests burned multiple times than in logged or once-burned forests. These findings demonstrate strong biodiversity cobenefits from protecting burned Amazon forests from recurrent fire. By contrast, soundscape changes after logging were subtle and more consistent with acoustic community recovery than reassembly. In both logged and burned forests, insects were the dominant acoustic markers of degradation, particularly during midday and nighttime hours, which are not typically sampled by traditional biodiversity field surveys. The acoustic fingerprints of degradation history were conserved across replicate recording locations, indicating that soundscapes may offer a robust, taxonomically inclusive solution for digitally tracking changes in acoustic community composition over time.


Assuntos
Ecossistema , Incêndios , Vocalização Animal , Acústica , Animais , Biodiversidade , Carbono , Florestas
7.
Nat Commun ; 12(1): 4003, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183663

RESUMO

Mangroves buffer inland ecosystems from hurricane winds and storm surge. However, their ability to withstand harsh cyclone conditions depends on plant resilience traits and geomorphology. Using airborne lidar and satellite imagery collected before and after Hurricane Irma, we estimated that 62% of mangroves in southwest Florida suffered canopy damage, with largest impacts in tall forests (>10 m). Mangroves on well-drained sites (83%) resprouted new leaves within one year after the storm. By contrast, in poorly-drained inland sites, we detected one of the largest mangrove diebacks on record (10,760 ha), triggered by Irma. We found evidence that the combination of low elevation (median = 9.4 cm asl), storm surge water levels (>1.4 m above the ground surface), and hydrologic isolation drove coastal forest vulnerability and were independent of tree height or wind exposure. Our results indicated that storm surge and ponding caused dieback, not wind. Tidal restoration and hydrologic management in these vulnerable, low-lying coastal areas can reduce mangrove mortality and improve resilience to future cyclones.


Assuntos
Avicennia/crescimento & desenvolvimento , Tempestades Ciclônicas , Ciclo Hidrológico/fisiologia , Conservação dos Recursos Naturais , Florida , Hidrologia , Lagoas , Imagens de Satélites , Áreas Alagadas
8.
Glob Chang Biol ; 27(11): 2377-2391, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33694227

RESUMO

Fires, among other forms of natural and anthropogenic disturbance, play a central role in regulating the location, composition and biomass of forests. Understanding the role of fire in global forest loss is crucial in constraining land-use change emissions and the global carbon cycle. We analysed the relationship between forest loss and fire at 500 m resolution based on satellite-derived data for the 2003-2018 period. Satellite fire data included burned area and active fire detections, to best account for large and small fires, respectively. We found that, on average, 38 ± 9% (± range) of global forest loss was associated with fire, and this fraction remained relatively stable throughout the study period. However, the fraction of fire-related forest loss varied substantially on a regional basis, and showed statistically significant trends in key tropical forest areas. Decreases in the fraction of fire-related forest loss were found where deforestation peaked early in our study period, including the Amazon and Indonesia while increases were found for tropical forests in Africa. The inclusion of active fire detections accounted for 41%, on average, of the total fire-related forest loss, with larger contributions in small clearings in interior tropical forests and human-dominated landscapes. Comparison to higher-resolution fire data with resolutions of 375 and 20 m indicated that commission errors due to coarse resolution fire data largely balanced out omission errors due to missed small fire detections for regional to continental-scale estimates of fire-related forest loss. Besides an improved understanding of forest dynamics, these findings may help to refine and separate fire-related and non-fire-related land-use change emissions in forested ecosystems.


Assuntos
Ecossistema , Incêndios , África , Florestas , Humanos , Indonésia , Árvores
9.
J Geophys Res Biogeosci ; 125(8): e2020JG005677, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32999796

RESUMO

Selective logging, fragmentation, and understory fires directly degrade forest structure and composition. However, studies addressing the effects of forest degradation on carbon, water, and energy cycles are scarce. Here, we integrate field observations and high-resolution remote sensing from airborne lidar to provide realistic initial conditions to the Ecosystem Demography Model (ED-2.2) and investigate how disturbances from forest degradation affect gross primary production (GPP), evapotranspiration (ET), and sensible heat flux (H). We used forest structural information retrieved from airborne lidar samples (13,500 ha) and calibrated with 817 inventory plots (0.25 ha) across precipitation and degradation gradients in the eastern Amazon as initial conditions to ED-2.2 model. Our results show that the magnitude and seasonality of fluxes were modulated by changes in forest structure caused by degradation. During the dry season and under typical conditions, severely degraded forests (biomass loss ≥66%) experienced water stress with declines in ET (up to 34%) and GPP (up to 35%) and increases of H (up to 43%) and daily mean ground temperatures (up to 6.5°C) relative to intact forests. In contrast, the relative impact of forest degradation on energy, water, and carbon cycles markedly diminishes under extreme, multiyear droughts, as a consequence of severe stress experienced by intact forests. Our results highlight that the water and energy cycles in the Amazon are driven by not only climate and deforestation but also the past disturbance and changes of forest structure from degradation, suggesting a much broader influence of human land use activities on the tropical ecosystems.

10.
J Adv Model Earth Syst ; 12(9): e2019MS001955, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33042387

RESUMO

Fire emissions of gases and aerosols alter atmospheric composition and have substantial impacts on climate, ecosystem function, and human health. Warming climate and human expansion in fire-prone landscapes exacerbate fire impacts and call for more effective management tools. Here we developed a global fire forecasting system that predicts monthly emissions using past fire data and climate variables for lead times of 1 to 6 months. Using monthly fire emissions from the Global Fire Emissions Database (GFED) as the prediction target, we fit a statistical time series model, the Autoregressive Integrated Moving Average model with eXogenous variables (ARIMAX), in over 1,300 different fire regions. Optimized parameters were then used to forecast future emissions. The forecast system took into account information about region-specific seasonality, long-term trends, recent fire observations, and climate drivers representing both large-scale climate variability and local fire weather. We cross-validated the forecast skill of the system with different combinations of predictors and forecast lead times. The reference model, which combined endogenous and exogenous predictors with a 1 month forecast lead time, explained 52% of the variability in the global fire emissions anomaly, considerably exceeding the performance of a reference model that assumed persistent emissions during the forecast period. The system also successfully resolved detailed spatial patterns of fire emissions anomalies in regions with significant fire activity. This study bridges the gap between the efforts of near-real-time fire forecasts and seasonal fire outlooks and represents a step toward establishing an operational global fire, smoke, and carbon cycle forecasting system.

11.
Ecol Lett ; 23(1): 99-106, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31642170

RESUMO

Understory fires represent an accelerating threat to Amazonian tropical forests and can, during drought, affect larger areas than deforestation itself. These fires kill trees at rates varying from < 10 to c. 90% depending on fire intensity, forest disturbance history and tree functional traits. Here, we examine variation in bark thickness across the Amazon. Bark can protect trees from fires, but it is often assumed to be consistently thin across tropical forests. Here, we show that investment in bark varies, with thicker bark in dry forests and thinner in wetter forests. We also show that thinner bark translated into higher fire-driven tree mortality in wetter forests, with between 0.67 and 5.86 gigatonnes CO2 lost in Amazon understory fires between 2001 and 2010. Trait-enabled global vegetation models that explicitly include variation in bark thickness are likely to improve the predictions of fire effects on carbon cycling in tropical forests.


En los bosques tropicales de la Amazonia, los incendios de sotobosque representan una amenaza que se está acelerando. Durante la sequía, pueden afectar un área mayor que la deforestación misma. Estos incendios pueden matan árboles a tasas que varían desde <10 hasta cerca de 90% dependiendo de la intensidad del fuego, la historia de perturbaciones forestales y los rasgos funcionales de los árboles. En este estudio, examinamos la variación en el grosor de la corteza en la Amazonía. La corteza puede proteger los árboles de los incendios, pero normalmente se supone que es uniformemente delgada en los bosques tropicales. Aquí, mostramos que el grosor de la corteza varía bastante, con una corteza más gruesa en los bosques secos y más delgada en los bosques húmedos. También, mostramos que cortezas más delgadas resultan en tasas de mortalidad más altas en bosques más húmedos. En total, estimamos que los incendios en el sotobosque de la Amazonía han añadido entre 0,67 y 5,86 gigatoneladas de CO2 atmosférico entre 2001-2010. Los modelos globales de vegetación que predicen los efectos de los incendios sobre el reciclaje de carbono en los bosques tropicales deberían incluir explícitamente la variación en el grosor de la corteza.


Os incêndios rasteiros de sub-bosque representam uma ameaça cada vez maior às florestas tropicais da Amazônia. Durante secas, eles podem afetar áreas maiores do que àquelas desmatadas. Esses incêndios matam árvores a taxas que variam de <10 a c. 90%, dependendo da intensidade do fogo, da história de distúrbios florestais e das características funcionais das árvores. Neste estudo, examinamos a variação na espessura da casca na Amazônia. A casca pode proteger árvores do fogo, mas geralmente é considerada uniformemente fina para diversas florestas tropicais. Aqui, mostramos que a espessura da casca varia, com cascas mais espessas ocorrendo em florestas secas e mais finas ocorrendo em florestas mais úmidas. Mostramos também que a casca mais fina resulta em taxas de mortalidade mais altas em florestas úmidas. No total, estimamos que os incêndios de sub-bosque adicionaram entre 0,67 e 5,86 gigatoneladas de CO2 atmosférico entre 2001-2010. Os modelos globais de vegetação devem incluir explicitamente a variação na espessura da casca ao prever os efeitos do fogo no ciclo do carbono de florestas tropicais.


Assuntos
Florestas , Árvores , Ciclo do Carbono , Casca de Planta , Sensibilidade e Especificidade
12.
J Comput Graph Stat ; 28(2): 401-414, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31543693

RESUMO

We consider alternate formulations of recently proposed hierarchical Nearest Neighbor Gaussian Process (NNGP) models (Datta et al., 2016a) for improved convergence, faster computing time, and more robust and reproducible Bayesian inference. Algorithms are defined that improve CPU memory management and exploit existing high-performance numerical linear algebra libraries. Computational and inferential benefits are assessed for alternate NNGP specifications using simulated datasets and remotely sensed light detection and ranging (LiDAR) data collected over the US Forest Service Tanana Inventory Unit (TIU) in a remote portion of Interior Alaska. The resulting data product is the first statistically robust map of forest canopy for the TIU.

13.
Stat Sin ; 29: 1155-1180, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33311955

RESUMO

Gathering information about forest variables is an expensive and arduous activity. As such, directly collecting the data required to produce high-resolution maps over large spatial domains is infeasible. Next generation collection initiatives of remotely sensed Light Detection and Ranging (LiDAR) data are specifically aimed at producing complete-coverage maps over large spatial domains. Given that LiDAR data and forest characteristics are often strongly correlated, it is possible to make use of the former to model, predict, and map forest variables over regions of interest. This entails dealing with the high-dimensional (~102) spatially dependent LiDAR outcomes over a large number of locations (~105-106). With this in mind, we develop the Spatial Factor Nearest Neighbor Gaussian Process (SF-NNGP) model, and embed it in a two-stage approach that connects the spatial structure found in LiDAR signals with forest variables. We provide a simulation experiment that demonstrates inferential and predictive performance of the SF-NNGP, and use the two-stage modeling strategy to generate complete-coverage maps of forest variables with associated uncertainty over a large region of boreal forests in interior Alaska.

14.
New Phytol ; 219(3): 959-971, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29577319

RESUMO

Amazon droughts, including the 2015-2016 El Niño, may reduce forest net primary productivity and increase canopy tree mortality, thereby altering both the short- and the long-term net forest carbon balance. Given the broad extent of drought impacts, inventory plots or eddy flux towers may not capture regional variability in forest response to drought. We used multi-temporal airborne Lidar data and field measurements of coarse woody debris to estimate patterns of canopy turnover and associated carbon losses in intact and fragmented forests in the central Brazilian Amazon between 2013-2014 and 2014-2016. Average annualized canopy turnover rates increased by 65% during the drought period in both intact and fragmented forests. The average size and height of turnover events was similar for both time intervals, in contrast to expectations that the 2015-2016 El Niño drought would disproportionally affect large trees. Lidar-biomass relationships between canopy turnover and field measurements of coarse woody debris were modest (R2  ≈ 0.3), given similar coarse woody debris production and Lidar-derived changes in canopy volume from single tree and multiple branch fall events. Our findings suggest that El Niño conditions accelerated canopy turnover in central Amazon forests, increasing coarse woody debris production by 62% to 1.22 Mg C ha-1  yr-1 in drought years .


Assuntos
Secas , El Niño Oscilação Sul , Florestas , Biomassa , Brasil , Carbono/metabolismo , Folhas de Planta/fisiologia , Madeira/fisiologia
15.
Proc Natl Acad Sci U S A ; 115(1): 121-126, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29229857

RESUMO

Many major corporations and countries have made commitments to purchase or produce only "sustainable" palm oil, a commodity responsible for substantial tropical forest loss. Sustainability certification is the tool most used to fulfill these procurement policies, and around 20% of global palm oil production was certified by the Roundtable on Sustainable Palm Oil (RSPO) in 2017. However, the effect of certification on deforestation in oil palm plantations remains unclear. Here, we use a comprehensive dataset of RSPO-certified and noncertified oil palm plantations (∼188,000 km2) in Indonesia, the leading producer of palm oil, as well as annual remotely sensed metrics of tree cover loss and fire occurrence, to evaluate the impact of certification on deforestation and fire from 2001 to 2015. While forest loss and fire continued after RSPO certification, certified palm oil was associated with reduced deforestation. Certification lowered deforestation by 33% from a counterfactual of 9.8 to 6.6% y-1 Nevertheless, most plantations contained little residual forest when they received certification. As a result, by 2015, certified areas held less than 1% of forests remaining within Indonesian oil palm plantations. Moreover, certification had no causal impact on forest loss in peatlands or active fire detection rates. Broader adoption of certification in forested regions, strict requirements to avoid all peat, and routine monitoring of clearly defined forest cover loss in certified and RSPO member-held plantations appear necessary if the RSPO is to yield conservation and climate benefits from reductions in tropical deforestation.


Assuntos
Conservação dos Recursos Naturais , Produção Agrícola , Magnoliopsida/crescimento & desenvolvimento , Óleo de Palmeira , Incêndios Florestais , Indonésia
17.
Carbon Balance Manag ; 10(1): 3, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25685178

RESUMO

BACKGROUND: Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography present a challenge for lidar remote sensing. RESULTS: We compared digital terrain models (DTM) derived from airborne lidar data from a mountainous region of the Atlantic Forest in Brazil to 35 ground control points measured with survey grade GNSS receivers. The terrain model generated from full-density (~20 returns m-2) data was highly accurate (mean signed error of 0.19 ± 0.97 m), while those derived from reduced-density datasets (8 m-2, 4 m-2, 2 m-2 and 1 m-2) were increasingly less accurate. Canopy heights calculated from reduced-density lidar data declined as data density decreased due to the inability to accurately model the terrain surface. For lidar return densities below 4 m-2, the bias in height estimates translated into errors of 80-125 Mg ha-1 in predicted aboveground biomass. CONCLUSIONS: Given the growing emphasis on the use of airborne lidar for forest management, carbon monitoring, and conservation efforts, the results of this study highlight the importance of careful survey planning and consistent sampling for accurate quantification of aboveground biomass stocks and dynamics. Approaches that rely primarily on canopy height to estimate aboveground biomass are sensitive to DTM errors from variability in lidar sampling density.

18.
Proc Natl Acad Sci U S A ; 111(17): 6347-52, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733937

RESUMO

Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW ⋅ m(-1)). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change.


Assuntos
Secas , Incêndios , Árvores/fisiologia , Biomassa , Brasil , Clima , Umidade , Temperatura , Fatores de Tempo , Pressão de Vapor , Água
19.
Nature ; 506(7487): 221-4, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24499816

RESUMO

The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data. We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.


Assuntos
Secas , Pigmentação/fisiologia , Folhas de Planta/fisiologia , Estações do Ano , Luz Solar , Árvores/fisiologia , Clima Tropical , Artefatos , Brasil , Cor , Ecossistema , Água Doce/análise , Modelos Biológicos , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Chuva , Imagens de Satélites , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento
20.
J Geophys Res Biogeosci ; 119(4): 645-660, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26213662

RESUMO

Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001-2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001-2010. Active fires in croplands, in contrast, increased at a rate of 3.4% per year. Cropland and prescribed/other fire types combined were responsible for 77% of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9% per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems. KEY POINTS: Wildland, cropland, and prescribed fires had different trends and patternsSensitivity to climate varied with fire typeIntensity of air quality regulation influenced cropland burning trends.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...